I need help solving this question: If 3−tan2π71−tan2π7=kcosπ7, find k. I simplified this down to:
4cos2π7−12cos2π7−1
But am unable to proceed further. The value of k is given to be 4, but I am unable to derive that result.
Kindly provide me with some insight, or with a step-by-step solution.
Thanks in advance,
Abhigyan
Answer
k=4cos2π7−1cosπ7(2cos2π7−1)=2cos2π7+1cos2π7cosπ7=2cos2π7+112(cos3π7+cosπ7)=4sinπ7cos2π7+2sinπ7sinπ7cos3π7+sinπ7cosπ7=2sin3π7−2sinπ7+2sinπ712(sin4π7−sin2π7+sin2π7)=4sin3π7sin4π7=4
No comments:
Post a Comment