Thursday, October 26, 2017

calculus - Does Intermediate Value Theorem $rightarrow $ continuous?

i try to understand Intermediate Value Theorem and wonder if the theorem works for the opposite side. I mean, if we know that $\forall c\:\:\:f\left(a\right)\le \:c\le \:f\left(b\right)\:,\:\exists x_0\in \left[a,b\right]\:\:$ such that $f\left(x_0\right)=c$ then $f\:$ is continuous in $\left[a,b\right]$? tnx!



EDITED: Continuity $\Rightarrow$ Intermediate Value Property. Why is the opposite not true? there is absolute fantastic answer for this!

No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...