Saturday, October 7, 2017

real analysis - Computing $lim_{epsilon rightarrow 0} int_0^infty frac{sin x}{x} arctan{frac{x}{epsilon}}dx$



I'm not exactly sure how to get started computing the limit of the improper Riemann integral




$$\lim_{\epsilon \rightarrow 0} \int_0^\infty \frac{\sin x}{x} \arctan\left(\frac{x}{\epsilon}\right)dx.$$



Using the result that $\int_0^\infty \frac{\sin x}{x} dx = \pi/2$, is there a way to interchange the limit and the integral to get $\pi^2/4$?


Answer



By the dominated convergence theorem
$$\lim_{\epsilon \to 0} \int_0^\pi \frac{\sin x}{x} \arctan\frac{x}{\epsilon}\,dx=\frac{\pi}{2}\int_0^\pi \frac{\sin x}{x}\,dx.
$$
Now
$$
\int_\pi^\infty \frac{\sin x}{x}\,\arctan\frac{x}{\epsilon}\,dx=\frac{\pi}{2}\int_\pi^\infty \frac{\sin x}{x}\,dx+\int_\pi^\infty \frac{\sin x}{x}\Bigl(\arctan\frac{x}{\epsilon}-\frac{\pi}{2}\Bigr)\,dx.

$$
Let's stimate the second integral:
$$
\Bigl|\arctan\frac{x}{\epsilon}-\frac{\pi}{2}\Bigr|=\int_{x/\epsilon}^\infty\frac{dt}{1+t^2}\le\frac{\epsilon}{x},
$$
and
$$
\int_\pi^\infty \Bigl|\frac{\sin x}{x}\Bigl(\arctan\frac{x}{\epsilon}-\frac{\pi}{2}\Bigr)\Bigr|\,dx\le\epsilon\int_\pi^\infty\frac{|\sin x|}{x^2}\,dx.
$$


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...