I'm not exactly sure how to get started computing the limit of the improper Riemann integral
limϵ→0∫∞0sinxxarctan(xϵ)dx.
Using the result that ∫∞0sinxxdx=π/2, is there a way to interchange the limit and the integral to get π2/4?
Answer
By the dominated convergence theorem
limϵ→0∫π0sinxxarctanxϵdx=π2∫π0sinxxdx.
Now
∫∞πsinxxarctanxϵdx=π2∫∞πsinxxdx+∫∞πsinxx(arctanxϵ−π2)dx.
Let's stimate the second integral:
|arctanxϵ−π2|=∫∞x/ϵdt1+t2≤ϵx,
and
∫∞π|sinxx(arctanxϵ−π2)|dx≤ϵ∫∞π|sinx|x2dx.
No comments:
Post a Comment