Assume that ∑∞n=0bnzn converges ∀z∈C. Let x=lim exists. Show that \sum_{n=0}^\infty a_n z^n converges \forall z\in\mathbb{C}.
Proof:
Since \sum_{n=0}^\infty b_n z^n converges \forall z\in\mathbb{C}, the radius of convergence R_{(b_n)}=\infty, \mbox{ i.e. } \limsup_{n\rightarrow\infty} b_n = 0. As x=\lim_{ n\rightarrow\infty}|\frac{a_n}{b_n}| exists, we can write x=\lim_{ n\rightarrow\infty}|\frac{a_n}{b_n}|=\limsup_{n\rightarrow\infty}|\frac{a_n}{b_m}|. I am stuck here.
I know that to show \sum_{n=0}^\infty a_n z^n converges \forall z\in\mathbb{C}, I need to prove that \limsup_{n\rightarrow\infty}a_n=0. Any suggestions?
Answer
Since the limit \lim_{n\to \infty}\left|\frac{a_n}{b_n}\right| exists it follows that the sequence \left|\frac{a_n}{b_n}\right| is bounded.
Therefore there exists a positive number M such that \left|a_n\right|\leq M\left|b_n\right| for all n\in\mathbb N.
We conclude that \left|a_nz^n\right|\leq M\left|b_nz^n\right| for all n\in\mathbb N and z\in\mathbb C and the result follows.
No comments:
Post a Comment