Thursday, October 5, 2017

calculus - Find intinftyinftyfrac1x12+1dx elementarily



Ho to find the following integral 1x12+1dx

using parts by substitution, partial fractions, etc. but not Cauchy's residue theorem?



Answer



Following Lucian's comment, by partial fractions we have 1x12+1=1(x4+1)(x8x4+1)=13[1x4+1+2x8x4+1x4x8x4+1]

where


1x4+1=x222(x2+2x1)+x+222(x2+2x+1)1x8x4+1=2x622(2+3)(233)(2x2+2x+6x2)+2x622(2+3)(233)(2x22x+6x2)+2x+622(2+3)(233)(2x2+2x+6x+2)+2x+622(2+3)(233)(2x22x+6x+2)x4x8x4+1=(1+3)x22(2+3)(233)(2x22x+6x2)+(1+3)x22(2+3)(233)(2x22x+6x+2)+(33)x26(2+3)(233)(2x2+2x+6x2)(31)x22(2+3)(233)(2x2+2x+6x+2)

The rest evaluations are elementary but tedious.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f:AB and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...