Without the use of L'hospitals rule, solve the following:
$$\lim_{x\rightarrow\infty}\left(\frac{x+2}{x+1}\right)^{x/2}$$
I'm trying to apply the limit that says $$\lim_{x\rightarrow\pm\infty} \left(1+\frac{1}{x}\right)^x = e$$
However, I'm confused as the exponent is now $x/2$ and $x$ is approaching positive infinity in the limit, and not $\pm\infty$. Also there's the rational.
Thank you in advance
No comments:
Post a Comment