Tuesday, October 31, 2017

real analysis - $limlimits_{n to{+}infty}{sqrt[n]{n!}}$ is infinite




How do I prove that $ \displaystyle\lim_{n \to{+}\infty}{\sqrt[n]{n!}}$ is infinite?


Answer



By considering Taylor series, $\displaystyle e^x \geq \frac{x^n}{n!}$ for all $x\geq 0,$ and $n\in \mathbb{N}.$ In particular, for $x=n$ this yields $$ n! \geq \left( \frac{n}{e} \right)^n .$$



Thus $$\sqrt[n]{n!} \geq \frac{n}{e} \to \infty.$$


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...