How do I prove that $ \displaystyle\lim_{n \to{+}\infty}{\sqrt[n]{n!}}$ is infinite?
Answer
By considering Taylor series, $\displaystyle e^x \geq \frac{x^n}{n!}$ for all $x\geq 0,$ and $n\in \mathbb{N}.$ In particular, for $x=n$ this yields $$ n! \geq \left( \frac{n}{e} \right)^n .$$
Thus $$\sqrt[n]{n!} \geq \frac{n}{e} \to \infty.$$
No comments:
Post a Comment