By using the Principle Of Mathematical Induction prove that:$1^3+2^3+3^3+.......+n^3=[\frac {n(n+1)}{2}]^2$.
My Approach:
Let, $P(n): 1^3+2^3+3^3+.....+k^3=[\frac {n(n+1)}{2}]^2$.
Base case $(n=1)$
$$L.H.S=1$$
$$R.H.S=[\frac {1(1+1)}{2}]^2$$
$$=[\frac {1\times 2}{2}]^2$$
$$=1$$.
$i.e., L.H.S=R.H.S$. So, $P(1)$ is true.
Induction Hypothesis:$(let, n=k)$.
Assume $P(k): 1^3+2^3+3^3+....+k^3=[\frac {k(k+1)}{2}]^2$ is true.
Please help to continue from here.
No comments:
Post a Comment