Tuesday, August 16, 2016

Using Induction prove the given statement;

By using the Principle Of Mathematical Induction prove that:$1^3+2^3+3^3+.......+n^3=[\frac {n(n+1)}{2}]^2$.




My Approach:



Let, $P(n): 1^3+2^3+3^3+.....+k^3=[\frac {n(n+1)}{2}]^2$.



Base case $(n=1)$
$$L.H.S=1$$
$$R.H.S=[\frac {1(1+1)}{2}]^2$$
$$=[\frac {1\times 2}{2}]^2$$
$$=1$$.




$i.e., L.H.S=R.H.S$. So, $P(1)$ is true.



Induction Hypothesis:$(let, n=k)$.



Assume $P(k): 1^3+2^3+3^3+....+k^3=[\frac {k(k+1)}{2}]^2$ is true.



Please help to continue from here.

No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...