By using the Principle Of Mathematical Induction prove that:13+23+33+.......+n3=[n(n+1)2]2.
My Approach:
Let, P(n):13+23+33+.....+k3=[n(n+1)2]2.
Base case (n=1)
L.H.S=1
R.H.S=[1(1+1)2]2
=[1×22]2
=1.
i.e.,L.H.S=R.H.S. So, P(1) is true.
Induction Hypothesis:(let,n=k).
Assume P(k):13+23+33+....+k3=[k(k+1)2]2 is true.
Please help to continue from here.
No comments:
Post a Comment