Friday, August 12, 2016

real analysis - Approximation of continuous functions by a functions with vanishing second derivative

Denote by $C^n[-\infty,+\infty]$ the class of functions which: have finite limits at $\pm \infty$; and are differentiable $n$ times on the line, with all these derivatives bounded. Denote by $C^3_0$ the subclass of $C^3[-\infty,+\infty]$ which have zero second derivative on $\mathbb{R}$. Endow $C^n[-\infty,+\infty]$ with the supremum norm (so that, in particular, $C^3_0$ inherits this norm).



My question is: is $C^3_0$ dense in $C^3[-\infty,+\infty]$ ?



Many thanks for your help.

No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...