The value of lim
Try: Put \displaystyle y=\frac{1}{z}
So \lim_{z\rightarrow 0}\ln\bigg(\frac{\sin(x+z)}{\sin x}\bigg)\cdot \frac{1}{z}
= \lim_{z\rightarrow 0}\frac{\ln(\sin (x+z))-\ln(\sin x)}{z}
Using L'Hospital rule
\lim_{z\rightarrow 0}\frac{\cos(x+z)}{\sin (x+z)}=\cot x
Could some help me? How can I solve without L'Hospital rule? Thanks
Answer
\displaystyle\lim_{y\rightarrow \infty}y \ln\bigg(\frac{\sin(x+1/y)}{\sin x}\bigg)=\displaystyle\lim_{y\rightarrow \infty}y \ln\bigg(\frac{\sin(x)\cos(1/y)+\cos(x)\sin(1/y)}{\sin x}\bigg)\\=\displaystyle\lim_{y\rightarrow \infty}y \ln\bigg(\cos(1/y)+\cot(x)\sin(1/y)\bigg)\\=\displaystyle\lim_{y\rightarrow \infty}y \ln\bigg(1+\big[\cos(1/y)+\cot(x)\sin(1/y)-1\big]\bigg)
Since \cos(1/y)+\cot(x)\sin(1/y)-1\to0 as y\to\infty, using the standard limit \displaystyle\lim_{m\to0}\frac{\ln(1+m)}{m}=1, we get
=\displaystyle\lim_{y\rightarrow \infty}y\big(\cos(1/y)+\cot(x)\sin(1/y)-1\big)\\=\displaystyle\lim_{z\to0^+}\frac{\cos z-1}z+\cot(x)\cdot\lim_{z\to0^+}\frac{\sin z}z
No comments:
Post a Comment