I need to prove the formula for the sine of the sum $$\sin(\alpha+\beta) = \sin(\alpha)\cos(\beta) + \sin(\beta)\cos(\alpha)$$
I already know how to prove it when $\alpha,\beta\geq 0$ and $\alpha+\beta <\pi/2$. How can I extend it to any pair of angles? The definition of sine and cosine that I am using is the length of the $y$-axis and the $x$-axis respectively when you intersect the circle of radius 1, but I can't use analytic geometry. Also I can't use complex numbers multiplication. Only relations like $\sin(\alpha +\pi/2) = \cos(\alpha)$.
Friday, August 12, 2016
trigonometry - Sine of the sum of angles
Subscribe to:
Post Comments (Atom)
analysis - Injection, making bijection
I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...
-
So if I have a matrix and I put it into RREF and keep track of the row operations, I can then write it as a product of elementary matrices. ...
-
I need to give an explicit bijection between $(0, 1]$ and $[0,1]$ and I'm wondering if my bijection/proof is correct. Using the hint tha...
-
Recently I took a test where I was given these two limits to evaluate: $\lim_\limits{h \to 0}\frac{\sin(x+h)-\sin{(x)}}{h}$ and $\lim_\limi...
No comments:
Post a Comment