Sunday, August 7, 2016

Limit of summation sumlimitsnk=1dfrac2fracknn+frac1k




Find the limit of summation lim



Can I use \mathop {\lim }\limits_{n \to \infty } \sum\limits_{k = 1}^n {\dfrac{{{2^{\frac{k}{n}}}}}{{n + \frac{1}{k}}}} = \mathop {\lim }\limits_{n \to \infty }\sum\limits_{k = 1}^n {\dfrac{{{2^{\frac{k}{n}}}}}{n}}?



Thank you for any help.


Answer



Yes you can but it will be a less than or equal inequality instead. This gives a upperbound which is \displaystyle \int_{0}^1 2^xdx. To prove that this is the answer, we write n+ \dfrac{1}{k} < n + 1= n\left(1+\dfrac{1}{n}\right)\implies L \ge \dfrac{\displaystyle \int_{0}^1 2^xdx}{ \displaystyle \lim_{n \to \infty} \left(1+\dfrac{1}{n}\right)} = \displaystyle \int_{0}^1 2^x dx


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...