I just wanted to evaluate
$$ \sum_{k=0}^n \cos k\theta $$
and I know that it should give
$$ \cos\left(\frac{n\theta}{2}\right)\frac{\sin\left(\frac{(n+1)\theta}{2}\right)}{\sin(\theta / 2)} $$
I tried to start by writing the sum as
$$ 1 + \cos\theta + \cos 2\theta + \cdots + \cos n\theta $$
and expand each cosine by its series representation. But this soon looked not very helpful so I need some clue about how this partial sum is calculated more efficiently ...
Answer
Use:
$$
\sin \frac{\theta}{2} \cdot \cos(k \theta) = \underbrace{\frac{1}{2} \sin\left( \left(k+\frac{1}{2}\right)\theta\right)}_{f_{k+1}} - \underbrace{\frac{1}{2} \sin\left( \left(k-\frac{1}{2}\right)\theta\right)}_{f_{k}}
$$
Thus
$$ \begin{eqnarray}
\sin \frac{\theta}{2} \cdot \sum_{k=1}^n \cos(k \theta) &=& \sum_{k=1}^n \left(f_{k+1} - f_k\right) = f_{n+1}-f_1 \\ &=& \frac{1}{2} \underbrace{\sin\left(\left(n+\frac{1}{2}\right)\theta\right)}_{\sin(\alpha+\beta)}-\frac{1}{2} \underbrace{\sin \frac{\theta}{2}}_{\sin(\alpha-\beta)} = \cos(\alpha) \sin(\beta) \\
&=& \cos\left(\frac{n+1}{2}\theta\right) \sin\left(\frac{n}{2} \theta\right)
\end{eqnarray}
$$
where $\alpha = \frac{n+1}{2} \theta$ and $\beta = \frac{n}{2} \theta$.
No comments:
Post a Comment