Find all function f:R+→R+ satisfying
(i) f(xf(y))=yf(x) for all positive real numbers, x,y
(ii) f(x) is bounded function for domain interval (1,∞)
Please help me check my work below. Thank you.
Let P(x,y) denote f(xf(y))=yf(x),∀x,y∈R+.
Let y1,y2∈R+ such that f(y1)=f(y2).
Consider P(x,y1) and P(x,y2) : we have
f(xf(y1))=f(xf(y2))=y1f(x)=y2f(x) then y1=y2 so f is injective.
Consider P(1,1) : f(f(1))=f(1)→f(1)=1
substitute x=1 in (i), we have f(f(y))=y.
Consider P(x,x) : f(xf(x))=xf(x)
Let xf(x)=z so f(z)=z,∃z∈R+
If z>1 then P(x,f(y)):f(x)f(y)=f(xy) so f(z)f(1z)=f(1)=1 so f(1z)=1z
then f(z2)=f(z)f(z)=z2 , f(z4)=f(z2)f(z2)=z4 so f(z2n)=z2n,∀n∈N, contradict (ii)
If z<1 then 1z>1. Since f(1z)=1z so f(1z2)=f(1z)f(1z)=1z2
then f(1z2n)=1z2n, contradict (ii)
Thus xf(x)=1, f(x)=1x,∀x∈R+
Answer check :
(i) f(xf(y))=yx=yf(x)
(ii) f(x)=1x<f(1)=1,∀x∈(1,∞)◼
No comments:
Post a Comment