Suppose that $f$ is continuous at $x_0$ and $f$ satisfies $f(x)+f(y)=f(x+y)$. Then how can we prove that $f$ is continuous at $x$ for all $x$? I seems to have problem doing anything with it. Thanks in advance.
Answer
Fix $a\in \mathbb{R}.$
Then
$\begin{align*}\displaystyle\lim_{x \rightarrow a} f(x) &= \displaystyle\lim_{x \rightarrow x_0} f(x - x_0 + a)\\ &= \displaystyle\lim_{x \rightarrow x_0} [f(x) - f(x_0) + f(a)]\\& = (\displaystyle\lim_{x \rightarrow x_0} f(x)) - f(x_0) + f(a)\\ & = f(x_0) -f(x_0) + f(a)\\ & = f(a). \end{align*}$
It follows $f$ is continuous at $a.$
No comments:
Post a Comment