Friday, May 10, 2019

linear algebra - Evaluate determinant of an ntimesn-Matrix



I have the following task:
Let K be a field, nN and a,bKn.
Evaluate the determinant of the following matrix:




(a1+b1b2b3bnb1a2+b2b3bnb1b2a3+b3bnb1b2b3an+bn)



What I did was expanding it as follows using the Laplace expansion:




det



And before I expand the rest of those determinants and fill 20 papers with a's and b's I'd like to ask for advice. Is this the right way? And when I think about it I don't really see any simplification that is possible when I have finally expanded everything to a point where I could use Cramers rule.
It just came to my mind that I could also expand using the Lapace rule by iterating through the rows instead of the columns. By doing that I'd be able to factor out all of those b_1...



NOTE: I am not allowed to use the Sylverster Determinant Theorem



Thank you very much for your help.




FunkyPeanut


Answer



\begin{array}{ll} D_n&=\begin{vmatrix} a_n+b_n & b_{n-1} & b_{n-2} & \dots & b_1& \\ b_n & a_{n-1} + b_{n-1} & b_{n-2} & \dots & b_1 \\ b_n & b_{n-1} & a_{n-2} + b_{n-2} & \dots & b_1 \\ \vdots & \vdots & \vdots& & \vdots \\ b_n & b_{n-1} & b_{n-2} &\dots & a_1 + b_1 \end{vmatrix}\\ &=\begin{vmatrix} a_n & b_{n-1} & b_{n-2} & \dots & b_1& \\ 0 & a_{n-1} + b_{n-1} & b_{n-2} & \dots & b_1 \\ 0 & b_{n-1} & a_{n-2} + b_{n-2} & \dots & b_1 \\ \vdots & \vdots & \vdots& & \vdots \\ 0 & b_{n-1} & b_{n-2} &\dots & a_1 + b_1 \end{vmatrix}\\ &+\begin{vmatrix} b_n & b_{n-1} & b_{n-2} & \dots & b_1& \\ b_n & a_{n-1} + b_{n-1} & b_{n-2} & \dots & b_1 \\ b_n & b_{n-1} & a_{n-2} + b_{n-2} & \dots & b_1 \\ \vdots & \vdots & \vdots& & \vdots \\ b_n & b_{n-1} & b_{n-2} &\dots & a_1 + b_1 \end{vmatrix}\\ &=a_nD_{n-1}+b_n\begin{vmatrix} 1 & b_{n-1} & b_{n-2} & \dots & b_1& \\ 1 & a_{n-1} + b_{n-1} & b_{n-2} & \dots & b_1 \\ 1 & b_{n-1} & a_{n-2} + b_{n-2} & \dots & b_1 \\ \vdots & \vdots & \vdots& & \vdots \\ 1 & b_{n-1} & b_{n-2} &\dots & a_1 + b_1 \end{vmatrix}\\ &=a_nD_{n-1}+b_n\begin{vmatrix} 1 & 0 & 0 & \dots & 0 & \\ 1 & a_{n-1} & 0 & \dots & 0 \\ 1 & 0 & a_{n-2} & \dots & 0 \\ \vdots & \vdots & \vdots& & \vdots \\ 1 & 0 & 0 &\dots & a_1 \end{vmatrix}\\ &= a_n D_{n-1}+b_n\prod_{k=1}^{n-1}a_k \end{array}



No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...