$$
I:=PV\int_0^\infty \frac{\log\left(\cos^2\left(\alpha x\right)\right)}{\beta^2-x^2} \, \mathrm dx=\alpha \pi,\qquad \alpha>0,\ \beta\in \mathbb{R}.$$
I am trying to solve this integral, I edited and added in Principle value to clarify the convergence issue that the community pointed out. I tried to use $2\cos^2(\alpha x)=1+\cos 2\alpha x\,$ and obtained
$$
I=-\log 2 \int_0^\infty \frac{\mathrm dx}{\beta^2-x^2}+\int_0^\infty \frac{\log (1+\cos 2 \alpha x)}{\beta^2-x^2}\mathrm dx,
$$
simplifying
$$
I=\frac{ \pi \log 2 }{2\beta}+\int_0^\infty \frac{\log (1+\cos 2 \alpha x)}{\beta^2-x^2}\mathrm dx
$$
but stuck here. Note the result of the integral is independent of the parameter $\beta$. Thank you
Also for $\alpha=1$, is there a geometrical interpretation of this integral and why it is $\pi$?
Note this integral
$$
\int_0^\infty \frac{\log \sin^2 \alpha x}{\beta^2-x^2} \,\mathrm dx=\alpha \pi-\frac{\pi^2}{2\beta},\qquad \alpha>0,\beta>0
$$
is also FASCINATING, note the constraint $\beta>0$ for this one. I am not looking for a solution to this too obviously on the same post, it is just to interest people with another friendly integral.
Answer
We make use of the identity
$$ \sum_{n=-\infty}^{\infty} \frac{1}{a^{2} - (x + n\pi)^{2}} = \frac{\cot(x+a) - \cot(x-a)}{2a}, \quad a > 0 \text{ and } x \in \Bbb{R}. $$
Then for $\alpha, \beta > 0$ it follows that
\begin{align*}
I := \mathrm{PV}\int_{0}^{\infty} \frac{\log\cos^{2}(\alpha x)}{\beta^{2} - x^{2}}
&= \frac{1}{2} \mathrm{PV} \int_{-\infty}^{\infty} \frac{\log\cos^{2}(\alpha x)}{\beta^{2} - x^{2}} \, dx \\
&= \frac{\alpha}{2} \mathrm{PV} \int_{-\infty}^{\infty} \frac{\log\cos^{2}x}{(\alpha\beta)^{2} - x^{2}} \, dx \\
&= \frac{\alpha}{2} \sum_{n=-\infty}^{\infty} \mathrm{PV} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\log\cos^{2}x}{(\alpha\beta)^{2} - (x+n\pi)^{2}} \, dx \\
&= \frac{\alpha}{2} \mathrm{PV} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \sum_{n=-\infty}^{\infty} \frac{1}{(\alpha\beta)^{2} - (x+n\pi)^{2}} \right) \log\cos^{2}x \, dx \\
&= \frac{1}{4\beta} \mathrm{PV} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\cot(x+\alpha\beta) - \cot(x-\alpha\beta)) \log\cos^{2}x \, dx,
\end{align*}
where interchanging the order of integration and summation is justified by Tonelli's theorem applied to the summation over large indices $n$. Then
\begin{align*}
I
&= \frac{1}{4\beta} \mathrm{PV} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\cot(x+\alpha\beta) - \cot(x-\alpha\beta)) \log\cos^{2}x \, dx \\
&= \frac{1}{2\beta} \mathrm{PV} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\cot(x+\alpha\beta) - \cot(x-\alpha\beta)) \log\left|2\cos x\right| \, dx \tag{1}
\end{align*}
Here, we exploited the following identity to derive (1).
$$ \mathrm{PV} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cot(x+a) \, dx = 0 \quad \forall a \in \Bbb{R}. $$
Now with the substitution $z = e^{2ix}$ and $\omega = e^{2i\alpha\beta}$, it follows that
\begin{align*}
I
&= \frac{1}{2\beta} \Re \mathrm{PV} \int_{|z|=1} \left( \frac{\bar{\omega}}{z - \bar{\omega}} - \frac{\omega}{z - \omega} \right) \log(1 + z) \, \frac{dz}{z}. \tag{2}
\end{align*}
Now consider the following unit circular contour $C$ with two $\epsilon$-indents $\gamma_{\omega,\epsilon}$ and $\gamma_{\bar{\omega},\epsilon}$.
Then the integrand of (2)
$$ f(z) = \left( \frac{\bar{\omega}}{z - \bar{\omega}} - \frac{\omega}{z - \omega} \right) \frac{\log(1 + z)}{z} $$
is holomorphic inside $C$ (since the only possible singularity at $z = 0$ is removable) and has only logarithmic singularity at $z = -1$. So we have
$$ \oint_{C} f(z) \, dz = 0. $$
This shows that
\begin{align*}
I
&= \frac{1}{2\beta} \Re \lim_{\epsilon \downarrow 0} \left( \int_{-\gamma_{\omega,\epsilon}} f(z) \, dz + \int_{-\gamma_{\bar{\omega},\epsilon}} f(z) \, dz \right) \\
&= \frac{1}{2\beta} \Re \left( \pi i \mathrm{Res}_{z=\omega} f(z) + \pi i \mathrm{Res}_{z=\bar{\omega}} f(z) \right) \\
&= \frac{1}{2\beta} \Re \left( - \pi i \log(1 + \omega) + \pi i \log(1 + \bar{\omega}) \right) \\
&= \frac{\pi}{\beta} \arg(1 + \omega)
= \frac{\pi}{\beta} \arctan(\tan (\alpha \beta)).
\end{align*}
In particular, if $\alpha\beta < \frac{\pi}{2}$ then we have
$$ I = \pi \alpha. $$
But due to the periodicity of $\arg$ function, this function draws a scaled saw-tooth function for $\alpha > 0$. Of course, $I$ is an even function of both $\alpha$ and $\beta$, so the final result is obtained by even extension of this saw-tooth function.
No comments:
Post a Comment