Tuesday, May 21, 2019

calculus - Finding $lim_{tto 0}frac{|t-2|}{t}$ and $lim_{tto infty}frac{|t-2|}{t}$


Find $$\lim_{t\to 0}\frac{|t-2|}{t}$$ and $$\lim_{t\to\infty}\frac{|t-2|}{t}$$


Usually I would simply the top and bottom but I'm not sure what to do for absolute values.


Any help would be appreciated. Thanks!


Answer



HINT : Note that $$|t-2|=\begin{cases}t-2&\text{if $t-2\ge 0$}\\-(t-2)&\text{if $t-2\lt 0$}\end{cases}$$ Hence, we have $$\lim_{t\to 0}\frac{|t-2|}{t}=\lim_{t\to 0}\frac{-(t-2)}{t}$$ and


$$\lim_{t\to \infty}\frac{|t-2|}{t}=\lim_{t\to\infty}\frac{t-2}{t}.$$


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...