What would be the nicest proof of the following theorem:
If $\lim\limits_{n \rightarrow \infty} a_{n} = \infty$, then $\lim\limits_{n \rightarrow \infty} \left(1 + \frac{1}{a_{n}} \right) ^ {a_{n} } = e$.
If $\lim\limits_{n \rightarrow \infty}b_{n} = 0$, then $\lim\limits_{n \rightarrow \infty} \left(1 + b_{n} \right) ^ {\frac {1} {b_{n}} } = e$.
I somehow failed to find a proof here on the website and in the literature.
Answer
Hint:
$$\left(1 + \frac{1}{\lfloor a_n \rfloor+1} \right)^{\lfloor a_n \rfloor} \leqslant \left(1 + \frac{1}{a_n} \right)^{a_n} \leqslant \left(1 + \frac{1}{\lfloor a_n \rfloor} \right)^{\lfloor a_n \rfloor+1}, $$
and
$$\left(1 + \frac{1}{n+1} \right)^n, \left( 1 + \frac{1}{n} \right)^{n+1} \to e$$
No comments:
Post a Comment