Consider the equation f(kx-f(x))=x=kf(x)-f(f(x)) for montonic f.
What can we say about the solutions to this equation. Comparing with Cauchy equation f(x+y)=f(x)+f(y), I think the solution must be somewhat close to being linear. Any hints. Thanks beforehand.
f(kx-f(x))=x \tag{1}
kf(x)-f(f(x)) =x \tag{2}
From (1) \implies f(x) is surjective.
(2) \implies Let f(a)=f(b)\implies a=kf(a)-f(f(a))=kf(b)-f(f(b)) = b \implies
f(x) is injective.
This means f(x) is bijective. So f^{-1}(x) exists.
(1)\implies f(kf^{-1}(x)-f(f^{-1}(x)))=f^{-1}(x) \implies f^{-1}(f(kf^{-1}(x)-x))=f^{-1}(f^{-1}(x)) \implies x =kf^{-1}(x) -f^{-1}(f^{-1}(x))
(2) \implies kx-f^{-1}(x) = f(x) \implies f^{-1}( kx-f^{-1}(x)) = x \implies
If f(x) is a solution to (1) and (2) then so is f^{-1}(x)=kx-f(x)
Let : g(x)=-f(-x) .
(1)\implies -f(-kx-f(-x))=x \implies g(kx+f(-x))=x \implies g(kx-g(x))=x
(2)\implies -kf(-x)+f(f(-x)) =x \implies kg(x)+f(-g(x))=x\implies kg(x)-g(g(x))=x
\implies If f(x) is a solution to (1) and (2) then so is g(x):=-f(-x).
Fixed points :
From (2) we see that if there exists an a for which f(a)=a then: kf(a)-f(f(a)) =a \implies ka =2a \implies a=0 \lor k=2
f(ka-f(a))=a \implies ka-f(a) =a \implies ka =2a \implies a=0 \lor k=2
Also we see that if there exists an a for which f(a)=-a then: kf(a)-f(f(a)) =a \implies -ka =2a \implies a=0 \lor k=-2
f(ka-f(a))=a \implies -ka-a =a \implies -ka =2a \implies a=0 \lor k=-2
From the above we see that when k=2 , then f(x)=x is a solution. And when k=-2 , then f(x)=-x is a solution.
General solution :
(Note: I screwed up a couple of times before here. Apologies to everyone who read it, if anyone did..I do think this must be the correct argument.)
We transform f(x) into a new function g(x) like this : g(x)+\frac{kx}{2}=f(x)
Which gives :
g(\frac{kx}{2}-g(x))-\frac{kg(x)}{2} =(1-\frac{k^2}{4})x \tag{1a}
-g(\frac{kx}{2}+g(x))+\frac{kg(x)}{2} =(1-\frac{k^2}{4})x \tag{2a}
There are two cases to consider :
Case 1 when k^2 \neq 4 :
Let g(a)=0 \implies (1a) \implies g(\frac{ka}{2}) =(1-\frac{k^2}{4})a
(2a) \implies -g(\frac{ka}{2} ) =(1-\frac{k^2}{4})a
\implies a=0 \implies g(0)=f(0)=0 \enspace ( k^2 \neq 4 )
From bijectivity and monotonicity I think we can conclude that f(x) and g(x) must be continuous, (and maybe even differentiable).
Here I'll assume g(x) can be written as a Taylor series around x=0 :
We calculate the first and second derivative :
g'(\frac{kx}{2}-g(x))(\frac{k}{2}-g'(x))-\frac{kg'(x)}{2} =(1-\frac{k^2}{4})
-g'(\frac{kx}{2}+g(x))(\frac{k}{2}+g'(x))+\frac{kg'(x)}{2} =(1-\frac{k^2}{4})
g'(0)(\frac{k}{2}-g'(0))-\frac{kg'(0)}{2} =(1-\frac{k^2}{4})
-g'(0)(\frac{k}{2}+g'(0))+\frac{kg'(0)}{2} =(1-\frac{k^2}{4})
g'(0) = \pm \sqrt{\frac{k^2}{4}-1}
g''(\frac{kx}{2}-g(x))(\frac{k}{2}-g'(x))^2+g'(\frac{kx}{2}-g(x))(-g''(x))-\frac{kg''(x)}{2} =0
-g''(\frac{kx}{2}+g(x))(\frac{k}{2}+g'(x))^2 -g'(\frac{kx}{2}+g(x))(g''(x))+\frac{kg''(x)}{2} =0
g''(0)(\frac{k}{2}-g'(0))^2+g'(0)(-g''(0))-\frac{kg''(0)}{2} =0
-g''(0)(\frac{k}{2}+g'(0))^2 -g'(0)(g''(0))+\frac{kg''(0)}{2} =0
g'(0)g''(0)( k + 1) =0 \implies g''(0)=0 \enspace \lor \enspace k=-1
-g''(0)(\frac{k^2}{4}+(k+1)g'(0)+g'(0)^2 -\frac{k}{2}) =0 \implies \text{(with $k=-1$ and $g'(0)^2=\frac{k^2}{4}-1$ )} \implies -g''(0)(\frac{1}{4} +\frac{1}{4}-1 -\frac{1}{2}) =0 \implies g''(0)=0
\implies g''(0) =0 . Also the higher derivatives in x=0 are 0 (I think).
So for k^2 \neq 4 we have : g(x)=\pm \sqrt{\frac{k^2}{4}-1} \cdot x. Or : f(x)=( \frac{k}{2} \pm \sqrt{\frac{k^2}{4}-1} ) \cdot x
Fill this in in the original equations to check :
g(x)= \sqrt{\frac{k^2}{4}-1} \cdot x
\sqrt{\frac{k^2}{4}-1} (\frac{k}{2}-\sqrt{\frac{k^2}{4}-1} )x-\frac{k}{2}\sqrt{\frac{k^2}{4}-1} x =(1-\frac{k^2}{4})x
-\sqrt{\frac{k^2}{4}-1} (\frac{k}{2}+\sqrt{\frac{k^2}{4}-1} )x+\frac{k}{2}\sqrt{\frac{k^2}{4}-1} x =(1-\frac{k^2}{4})x
g(x)= -\sqrt{\frac{k^2}{4}-1} \cdot x
-\sqrt{\frac{k^2}{4}-1}(\frac{k}{2}+\sqrt{\frac{k^2}{4}-1} )x+\frac{k}{2}\sqrt{\frac{k^2}{4}-1} x =(1-\frac{k^2}{4})x
+\sqrt{\frac{k^2}{4}-1} (\frac{k}{2}-\sqrt{\frac{k^2}{4}-1} )x-\frac{k}{2}\sqrt{\frac{k^2}{4}-1} x =(1-\frac{k^2}{4})x
\square
Case 2 when k^2 = 4 :
g(\frac{kx}{2}-g(x))-\frac{kg(x)}{2} =0 \tag{1b}
-g(\frac{kx}{2}+g(x))+\frac{kg(x)}{2} =0 \tag{2b}
We see that g(x) must be constant (see here for example : Functions f satisfying f\circ f(x)=2f(x)-x,\forall x\in\mathbb{R}.) and fill in as a general solution :
For k = 2 we have : g(x)= c . Or : f(x)= c + x .
For k = -2 we have : g(x)= 0 . Or : f(x)= - x .
\square
Below some solutions to modified versions :
Below some things that can be proved about the more general version of (1) and (2) : equation (3) :
More general case without '=x=' in between :
f(kx-f(x))=kf(x)-f(f(x)) \tag{3}
f(x)=0 and f(x)=kx and f(x)=\frac{kx}{2} are all solutions to (3) .
f(x)=0 is trivial.
Let: f(x)=kx \implies \\ f(kx-f(x))=kf(x)-f(f(x)) \implies f(kx-kx)=k^2x-f(kx) \implies 0=0
Let: f(x)=\frac{kx}{2} \implies f(kx-\frac{kx}{2})=k\frac{kx}{2}-f(\frac{kx}{2}) \implies \frac{k^2x}{2}= \frac{k^2x}{2} \enspace \square
There are many more solutions, including the ones above for (1) and (2).
Below a solution to a modified version of (1) and (2) : equation (4) and (5):
Modified case with '=\frac{k^2x}{4}=' in between :
f(kx-f(x))=\frac{k^2x}{4} \tag{4}
kf(x)-f(f(x)) =\frac{k^2x}{4} \tag{5}
f(x)=\frac{kx}{2} is a solution to (4) and (5).
Let: f(x)=\frac{kx}{2} \implies f(kx-\frac{kx}{2})=\frac{k^2x}{4} \implies \frac{k^2x}{4}=\frac{k^2x}{4} and :
k\frac{kx}{2}-f(\frac{kx}{2}) =\frac{k^2x}{4} \implies \frac{k^2x}{2}- \frac{k^2x}{4} =\frac{k^2x}{4} \enspace \square