Saturday, September 3, 2016

elementary number theory - How much can a fraction reduce?



Assume x/a and y/b are positive fractions in it's reduced form.




If x/a+y/b=z/c, where z/c is also reduced. What can we say about c?



Does abgcd(a,b)2|c?



If it's not true. Is it true when they are all between 0 and 1?


Answer



(1)  abz = bcx+acy  a,b | ac,bc  lcm(a,b) | (a,b) c  lcm(a,b)/(a,b) | c   QED



Note  lcm(a,b)/(a,b)=ab/(a,b)2  by the LCM GCD law  lcm(a,b) (a,b) = ab.




Above we used  a,b | x,y  lcm(a,b) | x,y lcm(a,b) | (x,y).



Below are two more proofs, the first a bit more conceptual and more detailed.



(2)  Suppose  c  is a denominator for  xa+yb  where  (a,x)=1=(b,y).  Then we infer



c (xa+yb)=zZ    abz = cbx+cay   a | cbx,  b | cay



c {ba, ab}Z  

by  (a,x)=1,  a | cbx  a | cb.  Similarly  b | ca.



c {βα, αβ}Z   by cancelling out  (a,b), with  α=a/(a,b),  β=b/(a,b). 



c {1α, 1β}Z   by  (α,β)=1,  α | cβ  α | c.  Similarly  β | c. 



c (1α 1β)  Z  by α,β | c  lcm(α,β) | c. lcm(α,β)=αβ  by (α,β)=1. QED



(3)  Finally, here is another proof based upon squaring a gcd and applying basic gcd laws.




  abz = bcx+acy    a | bcx    a | bc  by  (a,x)=1.  Similarly  b | ac.



Thusa | bc, b | ac    ab | a2c, abc, b2c



Thusa | bc, b | ac    ab | (a2c, abc, b2c) = (a,b)2c  QED



Note that the above proof uses only basic gcd laws (associative, commutative, distributive, etc) therefore it holds true in any GCD domain. Below is some further detail using said laws



 (a,b) (a,b) = (a(a,b),b(a,b)) = ((a2,ab),(ab,b2)) = (a2,ab,ab,b2) = (a2,ab,b2)




For some further discussion see here.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f:AB and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...