Wednesday, September 21, 2016

radicals - Prove that if $n$ is a positive integer then $sqrt{n}+ sqrt{2}$ is irrational



Prove that if $n$ is a positive integer then $\sqrt{n}+ \sqrt{2}$ is irrational.



The sum of a rational and irrational number is always irrational, that much I know - thus, if $n$ is a perfect square, we are finished.
However, is it not possible that the sum of two irrational numbers be rational? If not, how would I prove this?



This is a homework question in my proofs course.


Answer



Multiply both sides by $\sqrt n - \sqrt 2$. Then $n - 2 = \frac{p}{q} ( \sqrt n - \sqrt 2 )$ so $\sqrt n - \sqrt 2$ is also rational. So we have two rational numbers whose difference (which must be rational) is $2 \sqrt 2$, meaning that $\sqrt 2$ is rational.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...