Tuesday, September 13, 2016

calculus - Evaluating limxtofracpi4frac1tanx1sqrt2sinx



How can I evaluate limxπ41tanx12sinx without L'Hopital rule. Using L'Hopital rule, it evaluates to 2. Is there a way to do it without using L'Hopital?


Answer



Multiply by the conjugate and use trig identities, factoring appropriately:
limxπ41tanx12sinx=limxπ41tanx12sinx1+2sinx1+2sinx=limxπ4(1tanx)(1+2sinx)12sin2x=limxπ4(1sinxcosx)(1+2sinx)(1sin2x)sin2x=limxπ4(1sinxcosx)(1+2sinx)cos2xsin2xcosxcosx=limxπ4(cosxsinx)(1+2sinx)cosx(cosxsinx)(cosx+sinx)=limxπ41+2sinxcosx(cosx+sinx)=1+2sinπ4cosπ4(cosπ4+sinπ4)=1+2(12)12(12+12)=1+112(22)=22/2=2


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f:AB and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...