How can I evaluate limx→π41−tanx1−√2sinx without L'Hopital rule. Using L'Hopital rule, it evaluates to 2. Is there a way to do it without using L'Hopital?
Answer
Multiply by the conjugate and use trig identities, factoring appropriately:
limx→π41−tanx1−√2sinx=limx→π41−tanx1−√2sinx⋅1+√2sinx1+√2sinx=limx→π4(1−tanx)(1+√2sinx)1−2sin2x=limx→π4(1−sinxcosx)(1+√2sinx)(1−sin2x)−sin2x=limx→π4(1−sinxcosx)(1+√2sinx)cos2x−sin2x⋅cosxcosx=limx→π4(cosx−sinx)(1+√2sinx)cosx(cosx−sinx)(cosx+sinx)=limx→π41+√2sinxcosx(cosx+sinx)=1+√2sinπ4cosπ4(cosπ4+sinπ4)=1+√2(1√2)1√2(1√2+1√2)=1+11√2(2√2)=22/2=2
No comments:
Post a Comment