In ΔABC if a,b,c are in Harmonic Progression Then Prove that
sin2(A2),sin2(B2),sin2(C2)
are in Harmonic Progression
My Try:
we have
1b−1a=1c−1b
Then
a−ba=b−cc
and by Sine Rule
sinA−sinBsinA=sinB−sinCsinC
⟹
2sin(C2)cos(A−B2)2sin(A2)cos(A2)=2sin(A2)cos(B−C2)2sin(C2)cos(C2)
⟹
sin2(C2)(2cos(C2)cos(A−B2))=sin2(A2)(2cos(A2)cos(B−C2))
⟹
sin2(C2)(sinB+sinA)=sin2(A2)(sinB+sinC)
Any way to proceed?
No comments:
Post a Comment