Tuesday, January 1, 2019

Limit of limxto0fracsqrt1cos(x2))1cosx without L'hopital's rule or a series expansion




How does one evaluate the limit



lim



Without using series expansion or L'hopital's rule? I know it's pretty straightforward to use a series expansion to get the limit of \sqrt{2} but I wonder whether it is possible to evaluate this without such methods.


Answer



For 0<|x|<1,
\begin{align}\frac{\sqrt{1-\cos(x^2)}}{1-\cos x}&=\frac{\sqrt{1-\left(1-2\sin^2\left(\frac{x^2}2\right)\right)}}{1-\left(1-2\sin^2\left(\frac x2\right)\right)}=\frac{\sqrt2\sin\left(\frac{x^2}2\right)}{2\sin^2\left(\frac x2\right)}\\ &=\left(\sqrt2\right)\left(\frac{\sin\left(\frac{x^2}2\right)}{\frac{x^2}2}\right)\left(\frac{\frac x2}{\sin\left(\frac x2\right)}\right)^2\end{align}
So

\lim_{x\rightarrow0}\frac{\sqrt{1-\cos(x^2)}}{1-\cos x}=\left(\sqrt2\right)\left(1\right)\left(1\right)^2=\sqrt2


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...