how can one find the value of the expression, (12+22+32+⋯+n2)
Let,
T2(n)=12+22+32+⋯+n2
T2(n)=(12+n2)+(22+(n−1)2)+⋯
T2(n)=((n+1)2−2(1)(n))+((n+1)2−2(2)(n−1))+⋯
Answer
Hint: (n+1)3−n3=3n2+3n+1 and use telescopic sum.
how can one find the value of the expression, (12+22+32+⋯+n2)
Let,
T2(n)=12+22+32+⋯+n2
T2(n)=(12+n2)+(22+(n−1)2)+⋯
T2(n)=((n+1)2−2(1)(n))+((n+1)2−2(2)(n−1))+⋯
Answer
Hint: (n+1)3−n3=3n2+3n+1 and use telescopic sum.
I have injection f:A→B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...
No comments:
Post a Comment