Let
C=cosθ+cos(θ+2πn)+cos(θ+4πn)+...+cos(θ+(2n−2)πn)
and
S=sinθ+sin(θ+2πn)+sin(θ+4πn)+...+sin(θ+(2n−2)πn)
Show that C+iS forms a geometric series and hence show that C=0 and S=0
Then C+iS = (cosθ+cos(θ+2πn)+cos(θ+4πn))+i(sinθ+sin(θ+2πn)+sin(θ+4πn))
eiθ+exp(i(θ+2πn))+...+exp(i(θ+(2n−2)πn))
This is a far as I've got as I'm a little stuck where to go from here. Feel like I'm quite close to the answer though.
Answer
Yes, you are close indeed:
exp(iθ)+exp(i(θ+2π/n))+…+exp(i(θ+2π(n−1)/n))=exp(iθ)n−1∑k=0exp(2πik/n)=exp(iθ)n−1∑k=0exp(2πi/n)k=exp(iθ)1−exp(2πi/n)n1−exp(2πi/n)=exp(iθ)1−exp(2πi)1−exp(2πi/n)=0,
and hence C+iS=0, implying that C=S=0.
EDIT: By request, we can avoid using the sigma notation as follows. Put q=exp(2πi/n) for clarity. Then
exp(iθ)+exp(i(θ+2π/n))+…+exp(i(θ+2π(n−1)/n))=exp(iθ)(1+exp(2πi/n)+…+exp(2πi(n−1)/n))=exp(iθ)(1+q+…+qn−1)=exp(iθ)1−qn1−q,
etc.
No comments:
Post a Comment