Saturday, January 19, 2019

calculus - Determine limxto0fracxsinxx3=frac16, without L'Hospital or Taylor



How can I prove that lim



without using L'Hospital or Taylor series?




thanks :)


Answer



Let L = \lim_{x \to 0} \dfrac{x - \sin(x)}{x^3}. We then have
\begin{align} L & = \underbrace{\lim_{y \to 0} \dfrac{3y - \sin(3y)}{27y^3} = \lim_{y \to 0} \dfrac{3y - 3\sin(y) + 4 \sin^3(y)}{27y^3}}_{\sin(3y) = 3 \sin(y) - 4 \sin^3(y)}\\ & = \lim_{y \to 0} \dfrac{3y - 3\sin(y)}{27 y^3} + \dfrac4{27} \lim_{y \to 0} \dfrac{\sin^3(y)}{y^3} = \dfrac{3}{27} L + \dfrac4{27} \end{align}
This gives us 24L = 4 \implies L = \dfrac16


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...