Sunday, January 27, 2019

trigonometry - What is the exact value of sin 1 + sin 3 + sin 5 ... sin 177 + sin179 (in degrees)?

My attempt:



First I converted this expression to sum notation:



$\sin(1^\circ) + \sin(3^\circ) + \sin(5^\circ) + ... + \sin(175^\circ) + \sin(177^\circ) + \sin(179^\circ)$ = $\sum_{n=1}^{90}\sin(2n-1)^\circ$




Next, I attempted to use Euler's formula for the sum, since I needed this huge expression to be simplified in exponential form:



$\sum_{n=1}^{90}\sin(2n-1)^\circ$ = $\operatorname{Im}(\sum_{n=1}^{90}cis(2n-1)^\circ)$



$\operatorname{Im}(\sum_{n=1}^{90}cis(2n-1)^\circ)$ = $\operatorname{Im}(\sum_{n=1}^{90}e^{i(2n-1)^\circ})$



$\operatorname{Im}(\sum_{n=1}^{90}e^{i(2n-1)^\circ})$ = $\operatorname{Im}(e^{i} + e^{3i} + e^{5i} + ... + e^{175i} + e^{177i} + e^{179i})$



Next, I used the sum of the finite geometric series formula on this expression:




$\operatorname{Im}(e^{i} + e^{3i} + e^{5i} + ... + e^{175i} + e^{177i} + e^{179i})$ = $\operatorname{Im}(\dfrac{e^i(1-e^{180i})}{1-e^{2i}})$



$\operatorname{Im}(\dfrac{e^i(1-e^{180i})}{1-e^{2i}})$ = $\operatorname{Im}(\dfrac{2e^i}{1-e^{2i}})$



Now I'm stuck in here;

No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...