lim
I solved this limit problem by applying L'Hôpital's rule and I got -1.
Question: how to solve this limit without L'Hopital rule and Taylor series?
Answer
hint:
Divide Numerator and Denominator by e^{x^2-x}
\lim_{x \to -\infty} \frac {1-e^{x^2-x}}{1+e^{x^2-x}} = \lim_{x \to -\infty} \frac {\dfrac{1}{e^{x^2-x}}-1}{\dfrac{1}{e^{x^2-x}}+1}
Now, \lim_{x\rightarrow -\infty} \dfrac{1}{e^{x^2-x}} = 0, since \lim_{x\rightarrow -\infty} x^2 -x = +\infty and \lim_{x\rightarrow \infty} e^x = +\infty
\implies \text{ Rqrd. limit} = {-1}
No comments:
Post a Comment