Tuesday, January 22, 2019

calculus - Limit problem $e^x$ without L'Hôpital's rule




$$\lim_{x \to -\infty} \frac {1-e^{x^2-x}}{1+e^{x^2-x}}$$
I solved this limit problem by applying L'Hôpital's rule and I got $-1$.



Question: how to solve this limit without L'Hopital rule and Taylor series?


Answer



hint:



Divide Numerator and Denominator by $e^{x^2-x}$



$$\lim_{x \to -\infty} \frac {1-e^{x^2-x}}{1+e^{x^2-x}} = \lim_{x \to -\infty} \frac {\dfrac{1}{e^{x^2-x}}-1}{\dfrac{1}{e^{x^2-x}}+1}$$




Now, $\lim_{x\rightarrow -\infty} \dfrac{1}{e^{x^2-x}} = 0$, since $\lim_{x\rightarrow -\infty} x^2 -x = +\infty$ and $\lim_{x\rightarrow \infty} e^x = +\infty$
$$\implies \text{ Rqrd. limit} = {-1}$$


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...