I am trying to find the limit of the sequence by using root test and I don't understand why the limit is not zero? (the answer is inf).
Answer
By the root test:
$$\begin{array}{rcl} \displaystyle \limsup_{n\to\infty} \sqrt[n]{a_n} &=& \displaystyle \limsup_{n\to\infty} \sqrt[n]{\dfrac{n!}{4^n}} \\ &=& \displaystyle \dfrac14 \limsup_{n\to\infty} \sqrt[n]{n!} \\ &=& \displaystyle \dfrac14 \limsup_{n\to\infty} \sqrt[n]{\exp\left(n \ln n - n\right)} \\ &=& \displaystyle \dfrac14 \limsup_{n\to\infty} \exp\left(\ln n - 1\right) \\ &=& \displaystyle \dfrac1{4e} \limsup_{n\to\infty} n \\ &=& \infty \end{array}$$
Hence the sequence diverges to infinity.
No comments:
Post a Comment