Friday, December 23, 2016

integration - Converting double integrals to polar form: what would the limits be here?


So I have the following integral:


$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} {{{x^2}dxdy}\over (1 + \sqrt{x^2 + y^2})^5}$$


I know that converting the integral using polar coordinates gives:


$$\int \int {{r^2 \cos^2 \theta} \over {(1 + r)^5}} rdrd \theta$$


I'm assuming $r$ is going from $0$ to infinity.


But what about $\theta$?


Answer



Note that in order to cover $\mathbb{R}^2$, $r$ extends from $0$ to $\infty$ and $\theta$ spans an entire period of $\sin(\theta)$ and $\cos(\theta)$. (For example, the first quadrant alone is covered by $\theta \in [0,\pi/2]$, $r\in [0,\infty)$.)



Hence,


$$\begin{align} \int_{-\infty}^\infty\int_{-\infty}^\infty\frac{x^2}{(1+\sqrt{x^2+y^2})^5}\,dx\,dy&=\int_0^{2\pi}\int_0^\infty \frac{r^2\cos^2(\theta)}{(1+r)^5}r\,dr\,d\theta\\\\ &=\underbrace{\left(\int_0^{2\pi}\cos^2(\theta)\,d\theta\right)}_{=\pi}\underbrace{\left(\int_0^\infty \frac{r^3}{(1+r)^5}\,dr\right)}_{=1/4}\\\\ &=\frac{\pi}{4} \end{align}$$


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...