Thursday, March 3, 2016

Calculating a real integral using complex integration



$$\int^\infty_0 \frac{dx}{x^6 + 1}$$



Does someone know how to calculate this integral using complex integrals? I don't know how to deal with the $x^6$ in the denominator.


Answer



Thankfully the integrand is even, so we have



$$

\int^\infty_0 \frac{dx}{x^6 + 1} = \frac{1}{2}\int^\infty_{-\infty} \frac{dx}{x^6 + 1}.
\tag{1}
$$



To find this, we will calculate the integral



$$
\int_{\Gamma_R} \frac{dz}{z^6+1},
$$




where $\Gamma_R$ is the semicircle of radius $R$ in the upper half-plane, $C_R$, together with the line segment between $z=-R$ and $z=R$ on the real axis.



enter image description here



(Image courtesy of Paul Scott.)



Then



$$
\int_{\Gamma_R} \frac{dz}{z^6+1} = \int_{-R}^{R} \frac{dx}{x^6+1} + \int_{C_R} \frac{dz}{z^6+1}.

$$



We need to show that the integral over $C_R$ vanishes as $R \to \infty$. Indeed, the triangle inequality gives



$$\begin{align}
\left| \int_{C_R} \frac{dz}{z^6+1} \right| &\leq L(C_R) \cdot \max_{C_R} \left| \frac{1}{z^6+1} \right| \\
&\leq \frac{\pi R}{R^6 - 1},
\end{align}$$



where $L(C_R)$ is the length of $C_R$. From this we may conclude that




$$
\lim_{R \to \infty} \int_{\Gamma_R} \frac{dz}{z^6+1} = \int_{-\infty}^{\infty} \frac{dx}{x^6+1}.
\tag{2}
$$



The integral on the left is evaluated by the residue theorem. For $R > 1$ we have



$$
\int_{\Gamma_R} \frac{dz}{z^6+1} = 2\pi i \sum_{k=0}^{2} \operatorname{Res}\left(\frac{1}{z^6+1},\zeta^k \omega\right),

$$



where $\zeta$ is the primitive sixth root of unity and $\omega = e^{i\pi/6}$. Note that this is because $\omega$, $\zeta\omega$, and $\zeta^2 \omega$ are the only poles of the integrand inside $\Gamma_R$. The sum of the residues can be calculated directly, and we find that



$$
\int_{\Gamma_R} \frac{dz}{z^6+1} = 2\pi i \sum_{k=0}^{2} \operatorname{Res}\left(\frac{1}{z^6+1},\zeta^k \omega\right) = \frac{\pi}{3 \sin(\pi/6)} = \frac{2\pi}{3}.
$$



Thus, from $(1)$ and $(2)$ we conclude that




$$
\int_{0}^{\infty} \frac{dx}{x^6+1} = \frac{\pi}{3}.
$$



In general,



$$
\int_{0}^{\infty} \frac{dx}{x^{2n}+1} = \frac{\pi}{2 n \sin\left(\frac{\pi}{2n}\right)}
$$




for $n \geq 1$.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...