If $f: \mathbb{R} \to \mathbb{R}$ is a continuous function and satisfies $f(x)=f(2x+1)$, then its not to hard to show that $f$ is a constant.
My question is suppose $f$ is continuous and it satisfies $f(x)=f(2x+1)$, then can the domain of $f$ be restricted so that $f$ doesn't remain a constant. If yes, then give an example of such a function.
Answer
Let $f$ have value $1$ on $[0,\infty)$ and value $0$ on $(-\infty,-1]$. This function is not constant (although it is locally constant), and satisfies $f(x)=f(2x+1)$ whenever $x$ is in its domain.
No comments:
Post a Comment