Thursday, March 17, 2016

real analysis - Function Satisfying $f(x)=f(2x+1)$



If $f: \mathbb{R} \to \mathbb{R}$ is a continuous function and satisfies $f(x)=f(2x+1)$, then its not to hard to show that $f$ is a constant.



My question is suppose $f$ is continuous and it satisfies $f(x)=f(2x+1)$, then can the domain of $f$ be restricted so that $f$ doesn't remain a constant. If yes, then give an example of such a function.


Answer



Let $f$ have value $1$ on $[0,\infty)$ and value $0$ on $(-\infty,-1]$. This function is not constant (although it is locally constant), and satisfies $f(x)=f(2x+1)$ whenever $x$ is in its domain.



No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...