Tuesday, March 15, 2016

trigonometry - In a triangle, prove that acosA+bcosB+ccosC=frac8Delta2abc




I have to prove that for a triangle, acosA+bcosB+ccosC=8Δ2abc
where a,b,c are the lengths of the sides opposite to the angles A,B,C respectively. I followed the following procedure for the LHS:
acosA+bcosB+ccosC=a[2cos2(A2)1]+b[2cos2(B2)1]+c[2cos2(C2)1]=a[2s(sa)bc1]+b[2s(sb)ac1]+c[2s(sc)ab1]=2a(s(sa)bc)+2b(s(sb)ac)+2c(s(sc)ab)2s=2sabc[a2(sa)+b2(sb)+c2(sc)abc]
where s=a+b+c2




I want to convert that last equation into Heron's formula: Δ=s(sa)(sb)(sc)



But I'm stuck there. Any help please?


Answer



From the cosine rule:



cos(A)=b2+c2a22bc



So




acos(A)+bcos(B)+ccos(C)=ab2+c2a22bc+ba2+c2b22ac+ca2+b2c22ab=a2b2+c2a22abc+b2a2+c2b22abc+c2a2+b2c22abc=a2b2+a2c2a4+a2b2+b2c2b4+a2c2+b2c2c42abc=(abc)(a+bc)(a+cb)(a+b+c)2abc=(b+ca)(a+bc)(a+cb)(a+b+c)2abc=(2s2a)(2s2c)(2s2b)(2s)2abc=8(sa)(sc)(sb)(s)abc=8Δ2abc



No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f:AB and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...