I have to prove that for a triangle, acosA+bcosB+ccosC=8Δ2abc
where a,b,c are the lengths of the sides opposite to the angles A,B,C respectively. I followed the following procedure for the LHS:
acosA+bcosB+ccosC=a[2cos2(A2)−1]+b[2cos2(B2)−1]+c[2cos2(C2)−1]=a[2s(s−a)bc−1]+b[2s(s−b)ac−1]+c[2s(s−c)ab−1]=2a(s(s−a)bc)+2b(s(s−b)ac)+2c(s(s−c)ab)−2s=2sabc[a2(s−a)+b2(s−b)+c2(s−c)−abc]
where s=a+b+c2
I want to convert that last equation into Heron's formula: Δ=√s(s−a)(s−b)(s−c)
But I'm stuck there. Any help please?
Answer
From the cosine rule:
cos(A)=b2+c2−a22bc
So
acos(A)+bcos(B)+ccos(C)=ab2+c2−a22bc+ba2+c2−b22ac+ca2+b2−c22ab=a2b2+c2−a22abc+b2a2+c2−b22abc+c2a2+b2−c22abc=a2b2+a2c2−a4+a2b2+b2c2−b4+a2c2+b2c2−c42abc=−(a−b−c)(a+b−c)(a+c−b)(a+b+c)2abc=(b+c−a)(a+b−c)(a+c−b)(a+b+c)2abc=(2s−2a)(2s−2c)(2s−2b)(2s)2abc=8(s−a)(s−c)(s−b)(s)abc=8Δ2abc
No comments:
Post a Comment