Sunday, March 20, 2016

real analysis - Proving $limlimits_{x to 0} ({1 + sumlimits_{n = 1}^infty {{( - 1 )^n}{{( {frac{{sin nx}}{{nx}}})}^2}} } )= frac 12$




Could you show me $$\mathop {\lim }\limits_{x \to 0} \left( {1 + \sum\limits_{n = 1}^\infty {{{\left( { - 1} \right)}^n}{{\left( {\frac{{\sin nx}}{{nx}}} \right)}^2}} } \right) = \frac{1}{2}.\tag{1}$$





These day, I want to write a article about the sums of divergent series. In Hardy's book Divergent Series, he show me a method proposed by Riemann with
$$\mathop {\lim }\limits_{x \to 0} \left( {1 + \sum\limits_{n = 1}^\infty {{{\left( { - 1} \right)}^n}{{\left( {\frac{{\sin nx}}{{nx}}} \right)}^2}} } \right) ,$$ from which we can obtain $$1-1+1-1+\cdots=\frac12.$$
I hope someone tell me how to prove (1),Thanks!


Answer



We begin with the function $f(x)$ as represented by the series



$$f(x)=\sum_{n=1}^\infty (-1)^n\frac{\sin^2 nx}{n^2x^2} \tag 1$$




Using the identity



$$\sin^2nx=\frac{1-\cos 2nx}{2}$$



in $(1)$ yields



$$\begin{align}
f(x)&=\frac12 \sum_{n=1}^\infty (-1)^n\frac{1-\cos 2nx}{n^2x^2} \\\\
&=\frac12 \sum_{n=1}^\infty \frac{(-1)^n}{n^2x^2}-\frac12\text{Re}\left(\sum_{n=1}^\infty (-1)^n\frac{e^{i2nx}}{n^2x^2}\right)\\\\
&=-\frac{\pi^2}{24x^2}-\frac{1}{2x^2}\text{Re}\left(\text{Li}_2\left(-e^{i2x}\right)\right) \tag 2

\end{align}$$



We expand $\text{Li}_2\left(-e^{i2x}\right)$ in a series around $x=0$ to find



$$\text{Li}_2\left(-e^{i2x}\right)=-\frac{\pi^2}{12}-i2\log (2)x+ x^2+O(x^3) \tag 3$$



Then, upon substituting $(3)$ into $(2)$ we have



$$f(x)=-\frac12 +O(x)$$




Finally, we have



$$\bbox[5px,border:2px solid #C0A000]{\lim_{x\to 0}\left(1+\sum_{n=1}^\infty (-1)^n\frac{\sin^2 nx}{n^2x^2} \right)=\frac12}$$



as was to be shown!






NOTE:




If we inappropriately interchange the limit with the series and use $\lim_{x\to 0}\frac{\sin^2 nx}{n^2x^2}=1$, we obtain the absurd conclusion that



$$1-1+1-1+1\cdots =\frac12$$


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...