show that
limn→∞(π2∫0|sin(2n+1)xsinx|dx−2lnnπ)=6ln2π+2γπ+2π∞∑k=112k+1ln(1+1k)⋯(1)
I can prove (1) it exsit it.and also it is well kown that
In=∫π20sin(2n+1)xsinxdx=π2
proof:In−In−1=∫π20sin(2n+1)x−sin(2n−1)xsinxdx=2∫π20cos(2nx)dx=0
so
In=In−1=⋯=I0=π2
But I can't prove (1),Thank you
Answer
Notice for any continuous function f(x) on [0,π2], we have:
limn→∞∫π20|sin((2n+1)x)|f(x)dx=2π∫π20f(x)dx
Apply this to 1sinx−1x, we get
limn→∞∫π20|sin((2n+1)x)|(1sinx−1x)dx=2π∫π20(1sinx−1x)dx=2π[log(tan(x2)x)]π20=2π[log2π−log12]=2πlog4π
So it suffices to figure out the asymptotic behavior of following integral:
∫π20|sin((2n+1)x)|xdx=∫π(n+12)0|sinx|xdx=∫πn0|sinx|xdx+O(1n)
We can rewrite the rightmost integral as
∫π0sinx(n−1∑k=01x+kπ)dx=∫10sin(πx)(n−1∑k=01x+k)dx=∫10sin(πx)(ψ(x+n)−ψ(x))dx
where ψ(x)=Γ′(x)Γ(x) is the
digamma function.
Using following asymptotic expansion of ψ(x) for large x:
ψ(x)=logx−12x+∞∑k=1ζ(1−2k)x2k
It is easy to verify
∫10sin(πx)ψ(x+n)dx=2πlogn+O(1n)
Substitute (∗3) into (∗2) and combine it with (∗1), we get
limn→∞(∫π20|sin((2n+1)x)sinx|dx−2πlogn)=2πlog4π−∫10sin(πx)ψ(x)dx
To compute the rightmost integral of (∗4), we first integrate it by part:
∫10sin(πx)ψ(x)dx=∫10sin(πx)dlogΓ(x)=−π∫10cos(πx)logΓ(x)dx
We then apply following result[1]
Kummer (1847) Fourier series for logΓ(x) for x∈(0,1)
logΓ(x)=12logπsin(πx)+(γ+log(2π))(12−x)+1π∞∑k=2logkksin(2πkx)
Notice
∫10cos(πx)logπsin(πx)dx=0 because of symmtry.
∫10cos(πx)(12−x)dx=2π2
∫10cos(πx)sin(2πkx)dx=4k(4k2−1)π
We can evaluate RHS of (∗4) as
RHS(∗4)=2πlog4π+π[(γ+log(2π))2π2+4π2∞∑k=2logk4k2−1]=2π[log8+γ+∞∑k=2logk(12k−1−12k+1)]=6log2π+2γπ+2π∑k=1log(1+1k)2k+1
Notes
[1] For more infos about Kummer's Fourier series, please see
following paper by Donal F. Connon.
No comments:
Post a Comment