Monday, December 9, 2019

elementary number theory - Using the definition of congruence and Fermat's Little Theorem



I'm currently working on this problem:







Use the definition of congruence and Fermat's Little Theorem to show that if gcd(b,561)=1, then b560{1 mod 3,1 mod 11,1 mod 17.




Conclude that, if gcd(b,561)=1, then b5601 mod 561 and so 561 is a Carmichael number. Hint: What does it mean that b5611 mod 561?






So I'm guessing that it's significant that 3,11, and 17 all divide 561. Fermat's little theorem doesn't, by itself, provide for something like bp11 mod q where q and p are different, so I'm guessing this is where I need to use congruence to prove that 561 is congruent to 3, 11, and 17?


Answer



Because 561=31117, where 3,11,17 all are primes, you will have things like
b^2 \equiv 1 \pmod{3} \rightarrow (b^2)^{280} \equiv 1^{280} \pmod{3}
b^{10} \equiv 1 \pmod{11} \rightarrow (b^{10})^{56} \equiv 1^{56} \pmod{11}
b^{16} \equiv 1 \pmod{17} \rightarrow (b^{16})^{35} \equiv 1^{35} \pmod{17}

or
b^{560} \equiv 1 \pmod{3}
b^{560} \equiv 1 \pmod{11}
b^{560} \equiv 1 \pmod{17}
or
b^{560} - 1 =3q_1
b^{560} - 1 =11q_2
b^{560} - 1 =17q_3
and applying Euclid's lemma two times for 3q_1=11q_2=17q_3 b^{560} - 1 =561q
or b^{560} \equiv 1 \pmod{561}



No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...