$$\lim_{x\to0}\frac{\ln(1+\sin^3x \cos^2x)\cot(\ln^3(1+x))\tan^4x}{\sin(\sqrt{x^2+2}-\sqrt{2})\ln(1+x^2)}$$
I don't think L'hospital's rule will make the problem easy. (I am afraid to differentiate the numerator). The given limit has a $\frac{0}{0}$ form. I tried using taylor series but the it made the problem more complicated.
No comments:
Post a Comment