Solve x^{98} \equiv 99 \mod 125
Is there any easy way to solve equations like that? My observation is that from Euler's theorem we know that
x^{100} \equiv 1 \mod 125
so
x^{98} \equiv 99 \mod 125 \\ x^{100} \equiv 99x^2 \mod 125 \\ 99x^2 \equiv 1 \mod 125
but what is general method how to deal with equations like that?
Answer
Start mod 5, and then lift...
99 x^2 \equiv 4 x^2 \equiv (2x)^2 \equiv 1 \mod 5
so 2 x \equiv \pm 1 \mod 5, i.e. x \equiv 2 or 3 \mod 5.
If x \equiv 2 \mod 5, x \equiv 2 + 5 y \mod 25, and then
99 x^2 - 1 \equiv 5 y + 20 \equiv 0 \mod 25
y + 4 \equiv 0 \mod 5
y \equiv 1 \mod 5
So now x \equiv 2 + 5 + 25 z \equiv 7 + 25 z \mod 125, and then
99 x^2 - 1 \equiv 25 z + 100 \equiv 0 \mod 125
z + 4 \equiv 0 \mod 5
z \equiv 1 \mod 5
Thus one solution is x \equiv 2 + 5 + 25 \equiv 32 \mod 125
No comments:
Post a Comment