It seems that the following limit exists. But I couldn't figure out the exact value. Anyone could help me? Thanks!
limt→0+∞∑n=1√t1+tn2
Answer
Hint:
\sqrt t \int_1^\infty {\frac{1}{{1 + tx^2 }}\,dx} = \int_{\sqrt t }^\infty {\frac{1}{{1 + x^2 }}\,dx} \to \frac{\pi }{2}.
No comments:
Post a Comment