Let $f : \mathbb{R}\rightarrow\mathbb{R}$ be a function such that $f(x + y) + f(x − y) = f(xy)$ for all $x, y \in\mathbb{R}$. Then $f$ is:
A. Strictly increasing.
B. Strictly decreasing.
C. Identically zero.
D. Constant but not necessarily zero.
I have no idea how to do this. Thanks for any hint.
No comments:
Post a Comment