Friday, November 8, 2019

proving partial sums are arithmetic serie

Given $3$ arithmetic progressions with same difference $d$:



$(1)$ $a_1,a_2,a_3,...$ $(2)$ $b_1,b_2,b_3,...$ $(3)$ $c_1,c_2,c_3,...$.



defined: $S_n=a_1+a_2+a_3+...+a_n$



$T_n=b_1+b_2+b_3+...+b_n$



$R_n=c_1+c_2+c_3+...+c_n$




Need to prove that if $a_1,b_1,c_1$ is an arithmetic progression so $S_n,T_n,R_n$ is also an arithmetic progression.



I tried to use the fact that $2b_1=a_1+c_1$ and $a_2-a_1=b_2-b_1=c_2-c_1=d$ but i'm stuck



Any idea?



Thanks.



EDIT - $a_n,b_n,c_n$ are arithmetic progressions

No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...