limx→0x−sinxx−tanx=?
I tried using limx→0sinxx=1.
But it doesn't work :/
Answer
x−sin(x)x−tan(x)=x−sin(x)x3⋅x3x−tan(x)
Let x=3y and x→0⟹y→0
limx→0x−sin(x)x3=L
L=limy→03y−sin(3y)(3y)3=limy→0327y−sin(y)y3+limy→0427sin3(y)y3=19L+427
This gives
limx→0x−sin(x)x3=16
L=limy→03y−tan(3y)27y3=limy→01(1−3tan2(y))⋅3y(1−3tan2(y))−3tan(y)+tan3(y)27y3=limy→01(1−3tan2(y))⋅(327y−tan(y)y3+127tan3(y)y3−927ytan2(y)y3)=3L27+127−13
This gives other limit to be −1/3, put it up and get your limit.
No comments:
Post a Comment