I would like to prove that:
∫∞0ln(t)√te−tdt=−√π(γ+ln4)
I tried to use the integral ∫n0ln(t)√t(1−tn)ndt
∫n0ln(t)√t(1−tn)ndt⟶n→∞∫∞0ln(t)√te−tdt (dominated convergence theorem)
Using the substitution t→tn, I get:
∫n0ln(t)√t(1−tn)ndt=√n(ln(n)∫10(1−t)n√tdt+∫10ln(t)(1−t)n√tdt)
However I don't know if I am on the right track for these new integrals look quite tricky.
Answer
Consider integral representation for the Euler Γ-function: Γ(s)=∫∞0ts−1e−tdt Differentiate with respect to s: Γ(s)ψ(s)=∫∞0ts−1ln(t)e−tdt where ψ(s) is the digamma function. Now substitute s=12. So ∫∞0ln(t)√te−tdt=Γ(12)ψ(12) Now use duplication formula: Γ(2s)=Γ(s)Γ(s+1/2)22s−1√π Differentiating this with respect to s gives the duplication formula for ψ(s), and substitution of s=1/2 gives Γ(1/2)=√π. ψ(2s)=12ψ(s)+12ψ(s+1/2)+log(2) Substitute s=12 and use ψ(1)=−γ to arrive at the result.
No comments:
Post a Comment