Sunday, November 24, 2019

calculus - Proving $ int_{0}^{infty} frac{ln(t)}{sqrt{t}}e^{-t} mathrm dt=-sqrt{pi}(gamma+ln{4})$


I would like to prove that:


$$ \int_{0}^{\infty} \frac{\ln(t)}{\sqrt{t}}e^{-t} \mathrm dt=-\sqrt{\pi}(\gamma+\ln{4})$$


I tried to use the integral $$\int_{0}^{n} \frac{\ln(t)}{\sqrt{t}}\left(1-\frac{t}{n}\right)^n \mathrm dt$$


$$\int_{0}^{n} \frac{\ln(t)}{\sqrt{t}}\left(1-\frac{t}{n}\right)^n \mathrm dt \;{\underset{\small n\to\infty}{\longrightarrow}}\; \int_{0}^{\infty} \frac{\ln(t)}{\sqrt{t}}e^{-t} \mathrm dt$$ (dominated convergence theorem)


Using the substitution $t\to\frac{t}{n}$, I get:



$$ \int_{0}^{n} \frac{\ln(t)}{\sqrt{t}}\left(1-\frac{t}{n}\right)^n \mathrm dt=\sqrt{n}\left(\ln(n)\int_{0}^{1} \frac{(1-t)^n}{\sqrt{t}} \mathrm dt+\int_{0}^{1} \frac{\ln(t)(1-t)^n}{\sqrt{t}} \mathrm dt\right) $$


However I don't know if I am on the right track for these new integrals look quite tricky.


Answer



Consider integral representation for the Euler $\Gamma$-function: $$ \Gamma(s) = \int_0^\infty t^{s-1} \mathrm{e}^{-t} \mathrm{d} t $$ Differentiate with respect to $s$: $$ \Gamma(s) \psi(s) = \int_0^\infty t^{s-1} \ln(t) \mathrm{e}^{-t} \mathrm{d} t $$ where $\psi(s)$ is the digamma function. Now substitute $s=\frac{1}{2}$. So $$ \int_0^\infty \frac{ \ln(t)}{\sqrt{t}} \mathrm{e}^{-t} \mathrm{d} t = \Gamma\left( \frac{1}{2} \right) \psi\left( \frac{1}{2} \right) $$ Now use duplication formula: $$ \Gamma(2s) = \Gamma(s) \Gamma(s+1/2) \frac{2^{2s-1}}{\sqrt{\pi}} $$ Differentiating this with respect to $s$ gives the duplication formula for $\psi(s)$, and substitution of $s=1/2$ gives $\Gamma(1/2) = \sqrt{\pi}$. $$ \psi(2s) = \frac{1}{2}\psi(s) + \frac{1}{2} \psi(s+1/2) + \log(2) $$ Substitute $s=\frac{1}{2}$ and use $\psi(1) = -\gamma$ to arrive at the result.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...