Tuesday, November 12, 2019

Limit of a sequence including infinite product. $limlimits_{n toinfty}prod_{k=1}^n left(1+frac{k}{n^2}right)$


I need to find the limit of the following sequence: $$\lim\limits_{n \to\infty}\prod_{k=1}^n \left(1+\frac{k}{n^2}\right)$$


Answer




PRIMER:


In THIS ANSWER, I showed using only the limit definition of the exponential function and Bernoulli's Inequality that the logarithm function satisfies the inequalities


$$\bbox[5px,border:2px solid #C0A000]{\frac{x-1}{x}\le \log(x)\le x-1} \tag 1$$



for $x>0$.




Note that we have


$$\begin{align} \log\left(\prod_{k=1}^n \left(1+\frac{k}{n^2}\right)\right)&=\sum_{k=1}^n \log\left(1+\frac{k}{n^2}\right)\tag 2 \end{align}$$


Applying the right-hand side inequality in $(1)$ to $(2)$ reveals


$$\begin{align} \sum_{k=1}^n \log\left(1+\frac{k}{n^2}\right)&\le \sum_{k=1}^n \frac{k}{n^2}\\\\ &=\frac{n(n+1)}{2n^2} \\\\ &=\frac12 +\frac{1}{2n}\tag 3 \end{align}$$


Applying the left-hand side inequality in $(1)$ to $(2)$ reveals


$$\begin{align} \sum_{k=1}^n \log\left(1+\frac{k}{n^2}\right)&\ge \sum_{k=1}^n \frac{k}{k+n^2}\\\\ &\ge \sum_{k=1}^n \frac{k}{n+n^2}\\\\ &=\frac{n(n+1)}{2(n^2+n)} \\\\ &=\frac12 \tag 4 \end{align}$$


Putting $(2)-(4)$ together yields


$$\frac12 \le \log\left(\prod_{k=1}^n \left(1+\frac{k}{n^2}\right)\right)\le \frac12+\frac{1}{2n} \tag 5$$



whereby application of the squeeze theorem to $(5)$ gives


$$\bbox[5px,border:2px solid #C0A000]{\lim_{n\to \infty} \log\left(\prod_{k=1}^n \left(1+\frac{k}{n^2}\right)\right)=\frac12}$$


Hence, we find that


$$\bbox[5px,border:2px solid #C0A000]{\lim_{n\to \infty}\prod_{k=1}^n \left(1+\frac{k}{n^2}\right)=\sqrt e}$$


And we are done!


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...