How to calculate $5^{2003}$ mod $13$
using fermats little theorem
5^13-1 1 mod 13
(5^12)^166+11 mod 13
a+b modn=(a modn + b modn) modn
(1+11mod13)mod13
12 mod 13 = 12
why answer is 8 ?
how do we calculate this
thanks
I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...
No comments:
Post a Comment