I was wondering is there is a general formula for $\sin(x_1+x_2+x_3+...+x_n)$ as well as for the cosine function. I know that $\sin(x_1+x_2)=\sin(x_1)\cos(x_2)+\cos(x_1)\sin(x_2)$ and $\cos(x_1+x_2)=\cos(x_1)\cos(x_2)-\sin(x_1)\sin(x_2)$ But I want to find a general formula for the sum of a finite number of angles for the Sine and the cosine but I didn't noticed any pattern. I suspect that it may have a recursive pattern. Any suggestions and hints (not answers) will be appreciated.
Subscribe to:
Post Comments (Atom)
analysis - Injection, making bijection
I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...
-
So if I have a matrix and I put it into RREF and keep track of the row operations, I can then write it as a product of elementary matrices. ...
-
Recently I took a test where I was given these two limits to evaluate: $\lim_\limits{h \to 0}\frac{\sin(x+h)-\sin{(x)}}{h}$ and $\lim_\limi...
-
I need to give an explicit bijection between $(0, 1]$ and $[0,1]$ and I'm wondering if my bijection/proof is correct. Using the hint tha...
No comments:
Post a Comment