Saturday, October 19, 2019

calculus - How to calculate limit?


I'm puzzled with this limit. The answer is -0.5, but how to get it? $\lim_\limits{x \to \infty}1-x+\sqrt{\frac{x^3}{x+3}}$


Answer




I've tried to multiply by conjugate not only part with a variable, but all the expression, and this way I calculate it without replace and L'Hospital's Rule.


$\lim_\limits{x \to \infty} 1-x+\sqrt{\frac{x^3}{x+3}}=\lim_\limits{x \to \infty}\frac{\frac{x^3}{x+3}-(x-1)^2}{\sqrt{\frac{x^3}{x+3}}+x-1} = \lim_\limits{x \to \infty}\frac{-x^2+5x-3}{(x+3)\left(\frac{\sqrt{x^3}+\sqrt{x+3}(x-1)}{\sqrt{x+3}}\right)}=\lim_\limits{x \to \infty}\frac{-x^2+5x-3}{\sqrt{x^4+3x^3}+(x+3)(x+1)}$


Now we can see easily that factor before $x^2$ is $-1$ in numerator and $2$ in denominator, so the result is $-\frac{1}{2}$


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...