Wednesday, October 30, 2019

integration - Integral intf0racpi2x2sqrttanx,mathrmdx



Last year I wondered about this integral:π20x2tanxdx
That is because it looks very similar to this integral
and this one. Surprisingly the result is quite nice and an approach can be found here.
π20x2tanxdx=2π(5π2+12πln212ln22)96




Although the approach there is quite skillful, I believed that an elementary approach can be found for this integral.



Here is my idea. First we will consider the following two integrals: I=π20x2tanxdx;J=π20x2cotxdx
I=12((IJ)+(I+J))
Thust we need to evaluate the sum and the difference of those two from above.



I also saw from here that the "sister" integral differs only by a minus sign: π20x2cotxdx=2π(5π212πln212ln22)96
Thus using those two boxed answer we expect to find: IJ=π2ln222;I+J=5π3242πln2222







IJ=π20x2(tanxcotx)dx=2π20x2sinxcosxsin(2x)dx
=2π20x2(arccosh(sinx+cosx))dx=22π20xarccosh(sinx+cosx)dx
Let us also denote the last integral with I1 and do a π2x=x substitution:
I1=π20xarccosh(sinx+cosx)dx=π20(π2x)arccosh(sinx+cosx)dx
2I1=π2π20arccosh(sinx+cosx)dxIJ=π2π20arccosh(sinx+cosx)dx



By using (1) we can easily deduce that: \bbox[10pt,#000, border:2px solid green ]{\color{orange}{\int_0^\frac{\pi}{2} \operatorname{arccosh} (\sin x+\cos x)dx=\frac{\pi}{2}\ln 2}}







Doing something similar for I+J we get:
I+J=\int_0^\frac{\pi}{2} x^2\left(\sqrt{\tan x}+\sqrt{\cot x}\right)\,\mathrm dx=\sqrt 2\int_0^\frac{\pi}{2} x^2 \cdot \frac{\sin x+\cos x}{\sqrt{\sin (2x)}}dx
=\sqrt 2 \int_0^\frac{\pi}{2} x^2 \left( \arcsin \left(\sin x-\cos x\right)\right)'dx=\frac{\pi^3 \sqrt 2}{8}-2\sqrt 2 \int_0^\frac{\pi}{2} x \arcsin \left(\sin x-\cos x\right)dx



Unfortunately, we're not lucky this time and the substitution used for I-J doesn't help in this case.
Of course using (1) we can again deduce that:
\bbox[10pt,#000, border:2px solid green ]{\color{red}{\int_0^\frac{\pi}{2} x \arcsin \left(\sin x-\cos x\right)dx=\frac{\pi^3}{96}+\frac{\pi}{8}\ln^2 2}}







In the meantime I found a way for the first one, mainly using: \frac{\arctan x}{x}=\int_0^1 \frac{dy}{1+x^2y^2} Let us denote: I_1=\int_0^\frac{\pi}{2} \operatorname{arccosh} (\sin x+\cos x)dx\overset{IBP}= \int_0^\frac{\pi}{2} x \cdot \frac{\sin x-\cos x}{\sqrt{\sin(2x)}}dx
\overset{\tan x\rightarrow x}=\frac{1}{\sqrt 2}\int_0^\infty \frac{\arctan x}{1+x^2}\frac{x-1}{\sqrt x}dx=\frac1{\sqrt 2}\int_0^\infty \int_0^1 \frac{dy}{1+x^2y^2} \frac{\sqrt x(x-1)}{1+x^2}dx
=\frac1{\sqrt 2}\int_0^1 \int_0^\infty \frac{1}{1+y^2x^2} \frac{\sqrt x(x-1)}{1+x^2} dxdy
=\frac{1}{\sqrt 2}\int_0^1 \frac{{\pi}}{\sqrt 2}\left(\frac{2}{y^2-1}-\frac{1}{\sqrt y (y^2-1)}-\frac{\sqrt y}{y^2-1}\right)dy=\frac{\pi}{2}\ln 2



Although the integral in the third row looks quite unpleasant, it can be done quite elementary.







Sadly a similar approach for the second one is madness, because we would have:
I_2=\int_0^1 \int_0^1 \int_0^\infty \frac{\sqrt x (x+1)}{1+x^2}\frac{1}{1+y^2x^2}\frac{1}{1+z^2x^2} dxdydz



But atleast it gives hope that an elementary approach exists.




For this question I would like to see an elementary approach (without relying on special functions) for the second integral (red one).





If possible please avoid contour integration, although this might be
included in elementary.


Answer



On the path of Zacky, the missing part...



Let,



\begin{align}I&=\int_0^{\frac{\pi}{2}}x^2\sqrt{\tan x}\,dx\\ J&=\int_0^{\frac{\pi}{2}}\frac{x^2}{\sqrt{\tan x}}\,dx\\ \end{align}




Perform the change of variable y=\sqrt{\tan x},



\begin{align}I&=\int_0^{\infty}\frac{2x^2\arctan^2\left(x^2\right)}{1+x^4}\,dx\\\\ J&=\int_0^{\infty}\frac{2x^2\arctan^2\left(\frac{1}{x^2}\right)}{1+x^4}\,dx\\ \end{align}



\begin{align} \text{I+J}&=\int_0^{\infty}\frac{2x^2\left(\arctan\left(x^2\right)+\arctan\left(\frac{1}{x^2}\right)\right)^2}{1+x^4}\,dx-4\int_0^{\infty}\frac{x^2\arctan\left(x^2\right)\arctan\left(\frac{1}{x^2}\right)}{1+x^4}\,dx\\ &=\frac{\pi^2}{4}\int_0^{\infty}\frac{2x^2}{1+x^4}\,dx-4\int_0^{\infty}\frac{x^2\arctan\left(x^2\right)\arctan\left(\frac{1}{x^2}\right)}{1+x^4}\,dx\\ \end{align}



Perform the change of variable y=\dfrac{1}{x},



\begin{align} \text{K}&=\int_0^{\infty}\frac{2x^2}{1+x^4}\,dx\\ &=\int_0^{\infty}\frac{2}{1+x^4}\,dx\\ \end{align}



Therefore,




\begin{align} \text{2K}=\int_0^{\infty}\frac{2\left(1+\frac{1}{x^2}\right)}{\left(x-\frac{1}{x}\right)^2+2}\,dx \end{align}



Perform the change of variable y=x-\dfrac{1}{x},



\begin{align}\text{2K}&=2\int_{-\infty}^{+\infty}\frac{1}{2+x^2}\,dx\\ &=2\left[\frac{1}{\sqrt{2}}\arctan\left(\frac{x}{\sqrt{2}}\right)\right]_{-\infty}^{+\infty}\\ &=2\times \frac{\pi}{\sqrt{2}} \end{align}



therefore,



\begin{align} \text{I+J}&=\frac{\pi^3}{4\sqrt{2}}-4\int_0^{\infty}\frac{x^2\arctan\left(x^2\right)\arctan\left(\frac{1}{x^2}\right)}{1+x^4}\,dx\\ \end{align}



Let a>0,




\begin{align} \text{K}_1(a)&=\int_0^{\infty}\frac{x^2}{a+x^4}\,dx\\ &=\frac{1}{a}\int_0^{\infty}\frac{x^2}{1+\left(a^{-\frac{1}{4}}x\right)^4}\,dx\\ \end{align}



Perform the change of variable y=a^{-\frac{1}{4}}x,



\begin{align} \text{K}_1(a)&=a^{-\frac{1}{4}}\int_0^{\infty}\frac{x^2}{1+x^4}\,dx\\ &=\frac{a^{-\frac{1}{4}}\pi}{2\sqrt{2}} \end{align}



In the same manner,



\begin{align} \text{K}_2(a)&=\int_0^{\infty}\frac{x^2}{1+ax^4}\,dx\\ &=\frac{a^{-\frac{3}{4}}\pi}{2\sqrt{2}} \end{align}



Since, for a real,




\begin{align}\arctan a=\int_0^1 \frac{a}{1+a^2t^2}\,dt\end{align}



then,



\begin{align}\text{L}&=\int_0^{\infty}\frac{x^2\arctan\left(x^2\right)\arctan\left(\frac{1}{x^2}\right)}{1+x^4}\,dx\\ &=\int_0^{\infty}\left(\int_0^1 \int_0^1 \frac{x^2}{(1+u^2x^4)\left(1+\frac{v^2}{x^4}\right)(1+x^4)}\,du\,dv\right)\,dx\\ &=\\ &\int_0^{\infty}\left(\int_0^1\int_0^1 \left(\frac{x^2}{(1-u^2)(1-v^2)(1+x^4)}-\frac{x^2}{1-u^2v^2}\left(\frac{u^2}{(1-u^2)(1+u^2x^4)}+\frac{v^2}{(1-v^2)(v^2+x^4)}\right) \right)dudv\right)dx\\ &=\int_0^1\int_0^1 \left(\frac{\pi}{2\sqrt{2}(1-u^2)(1-v^2)}-\frac{1}{1-u^2v^2}\left(\frac{u^2\text{K}_2(u^2)}{1-u^2}+\frac{v^2\text{K}_1(v^2)}{1-v^2}\right)\right)dudv\\ &=\frac{\pi}{2\sqrt{2}}\int_0^1\int_0^1 \left(\frac{1}{(1-u^2)(1-v^2)}-\frac{1}{(1-u^2v^2)}\left(\frac{u^{\frac{1}{2}}}{1-u^2}+\frac{v^{\frac{3}{2}}}{1-v^2}\right)\right)dudv\\ &=\pi\int_0^1\left[\frac{\sqrt{v}\left(\text{ arctanh}\left(\sqrt{uv}\right)-\text{ arctan}\left(\sqrt{uv}\right)-\text{ arctanh}\left(uv\right)\right)+\arctan\left(\sqrt{u}\right)+\ln\left(\frac{\sqrt{1+u}}{1+\sqrt{u}}\right)}{2\sqrt{2}(1-v^2)}\right]_{u=0}^{u=1}\,dv\\ &=\frac{\pi}{2\sqrt{2}}\int_0^1\frac{\sqrt{v}\big(\text{ arctanh}\left(\sqrt{v}\right)-\text{ arctan}\left(\sqrt{v}\right)-\text{ arctanh}\left(v\right)\big)+\frac{\pi}{4}-\frac{1}{2}\ln 2}{1-v^2}\,dv\\ &=\frac{\pi}{2\sqrt{2}}\int_0^1\frac{\sqrt{v}\arctan\left(\frac{1-\sqrt{v}}{1+\sqrt{v}}\right)}{1-v^2}\,dv+\frac{\pi}{2\sqrt{2}}\left(\frac{\pi}{4}-\frac{1}{2}\ln 2\right)\int_0^1 \frac{1-\sqrt{v}}{1-v^2}\,dv+\\ &\frac{\pi}{2\sqrt{2}}\int_0^1\frac{\sqrt{v}\ln\left(\frac{1+\sqrt{v}}{2}\right)}{1-v^2}\,dv-\frac{\pi}{4\sqrt{2}}\int_0^1\frac{\sqrt{v}\ln\left(\frac{1+v}{2}\right)}{1-v^2}\,dv \end{align}



Perform the change of variable y=\dfrac{1-\sqrt{v}}{1+\sqrt{v}},




\begin{align}\text{R}_1&=\int_0^1\frac{\sqrt{v}\arctan\left(\frac{1-\sqrt{v}}{1+\sqrt{v}}\right)}{1-v^2}\,dv\\ &=\frac{1}{2}\int_0^1 \frac{(1-v)^2\arctan v}{v(1+v^2)}\,dv\\ &=\frac{1}{2}\int_0^1 \frac{\arctan v}{v}\,dv-\int_0^1 \frac{\arctan v}{1+v^2}\,dv\\ &=\frac{1}{2}\text{G}-\frac{1}{2}\Big[\arctan^2 v\Big]_0^1\\ &=\frac{1}{2}\text{G}-\frac{\pi^2}{32}\\ \text{R}_2&=\int_0^1 \frac{1-\sqrt{v}}{1-v^2}\,dv\\ &=\left[\ln\left(\frac{\sqrt{1+v}}{1+\sqrt{v}}\right)+\arctan\left(\sqrt{v}\right)\right]_0^1\\ &=\frac{\pi}{4}-\frac{1}{2}\ln 2\\ \end{align}




Perform the change of variable y=\dfrac{1-\sqrt{v}}{1+\sqrt{v}},



\begin{align}\text{R}_3&=\int_0^1\frac{\sqrt{v}\ln\left(\frac{1+\sqrt{v}}{2}\right)}{1-v^2}\,dv\\ &=-\frac{1}{2}\int_0^1\frac{(1-v)^2\ln(1+v)}{v(1+v^2)}\,dv\\ &=\int_0^1\frac{\ln(1+v)}{1+v^2}\,dv-\frac{1}{2}\int_0^1 \frac{\ln(1+v )}{v}\,dv\\ &=\int_0^1\frac{\ln(1+v)}{1+v^2}\,dv-\frac{1}{4}\int_0^1 \frac{2v\ln(1-v^2)}{v^2}\,dv+\frac{1}{2}\int_0^1 \frac{\ln(1-v)}{v}\,dv\\ \end{align}



In the second integral perform the change of variable y=v^2,




\begin{align}\text{R}_3&=\int_0^1\frac{\ln(1+v)}{1+v^2}\,dv+\frac{1}{4}\int_0^1 \frac{\ln(1-v)}{v}\,dv\\ \end{align}



In the second integral perform the change of variable y=1-v,



\begin{align}\text{R}_3&=\int_0^1\frac{\ln(1+v)}{1+v^2}\,dv+\frac{1}{4}\int_0^1 \frac{\ln v}{1-v}\,dv\\ &=\int_0^1\frac{\ln(1+v)}{1+v^2}\,dv+\frac{1}{4}\times -\zeta(2)\\ &=\int_0^1\frac{\ln(1+v)}{1+v^2}\,dv-\frac{\pi^2}{24}\\ \end{align}




Perform the change of variable y=\dfrac{1-v}{1+v},



\begin{align} \text{S}_1&=\int_0^1\frac{\ln(1+v)}{1+v^2}\,dv\\ &=\int_0^1\frac{\ln(\frac{2}{1+v})}{1+v^2}\,dv\\ &=\ln 2\int_0^1 \frac{1}{1+v^2}\,dv-\text{S}_1\\ &=\frac{\pi}{4}\ln 2-\text{S}_1 \end{align}




Therefore,



\begin{align} \text{S}_1&=\frac{\pi}{8}\ln 2\\ \text{R}_3&=\frac{\pi}{8}\ln 2-\frac{\pi^2}{24}\\ \end{align}



Perform the change of variable y=\dfrac{1-\sqrt{v}}{1+\sqrt{v}},



\begin{align} \text{R}_4&=\int_0^1\frac{\sqrt{v}\ln\left(\frac{1+v}{2}\right)}{1-v^2}\,dv\\ &=\frac{1}{2}\int_0^1 \frac{(1-v)^2\ln\left(\frac{1+v^2}{(1+v)^2}\right)}{v(1+v^2)}\,dv\\ &=\frac{1}{2}\int_0^1 \frac{(1-v)^2\ln\left(1+v^2\right)}{v(1+v^2)}\,dv+2\text{R}_3\\ &=\frac{1}{2}\int_0^1\frac{\ln(1+v^2)}{v}\,dv-\int_0^1\frac{\ln(1+v^2)}{1+v^2}\,dv+\frac{\pi}{4}\ln 2-\frac{\pi^2}{12}\\ &=\frac{1}{2}\times \frac{1}{4}\zeta(2)-\int_0^1\frac{\ln(1+v^2)}{1+v^2}\,dv+\frac{\pi}{4}\ln 2-\frac{\pi^2}{12}\\ &=\frac{\pi}{4}\ln 2-\frac{\pi^2}{16}-\int_0^1\frac{\ln(1+v^2)}{1+v^2}\,dv\\ &=\frac{\pi}{4}\ln 2-\frac{\pi^2}{16}-\int_0^1\int_0^1\frac{v^2}{(1+v^2)(1+v^2t)}\,dt\,dv\\ &=\frac{\pi}{4}\ln 2-\frac{\pi^2}{16}-\int_0^1 \left[\frac{\arctan\left(v\right)\sqrt{t}-\arctan\left(v\sqrt{t}\right)}{(t-1)\sqrt{t}}\right]_{v=0}^{v=1}\,dt\\ &=\frac{\pi}{4}\ln 2-\frac{\pi^2}{16}-\int_0^1 \frac{\frac{\pi\sqrt{t}}{4}-\arctan\left(\sqrt{t}\right)}{(t-1)\sqrt{t}}\,dt\\ &=\frac{\pi}{4}\ln 2-\frac{\pi^2}{16}+\int_0^1 \frac{\arctan\left(\frac{1-\sqrt{t}}{1+\sqrt{t}}\right)}{(1-t)\sqrt{t}}\,dt-\frac{\pi}{4}\int_0^1 \frac{\sqrt{t}-1}{(t-1)\sqrt{t}}\,dt\\ &=\frac{\pi}{4}\ln 2-\frac{\pi^2}{16}+\int_0^1 \frac{\arctan\left(\frac{1-\sqrt{t}}{1+\sqrt{t}}\right)}{(1-t)\sqrt{t}}\,dt-\frac{\pi}{4}\Big[2\ln\left(1+\sqrt{t}\right)\Big]_0^1\\ &=\int_0^1 \frac{\arctan\left(\frac{1-\sqrt{t}}{1+\sqrt{t}}\right)}{(1-t)\sqrt{t}}\,dt-\frac{\pi}{4}\ln 2-\frac{\pi^2}{16}\\ \end{align}



Perform the change of variable y=\dfrac{1-\sqrt{t}}{1+\sqrt{t}},



\begin{align} \text{R}_4&=\int_0^1 \frac{\arctan t}{t}\,dt-\frac{\pi}{4}\ln 2-\frac{\pi^2}{16}\\ &=\text{G}-\frac{\pi}{4}\ln 2-\frac{\pi^2}{16}\\ \end{align}




Therefore,



\begin{align}L&=\frac{\pi}{2\sqrt{2}}\text{R}_1+\frac{\pi}{2\sqrt{2}}\left(\frac{\pi}{4}-\frac{1}{2}\ln 2\right) \text{R}_2+\frac{\pi}{2\sqrt{2}}\text{R}_3-\frac{\pi}{4\sqrt{2}}\text{R}_4\\ &=\frac{\pi}{2\sqrt{2}}\left(\frac{\text{G}}{2}-\frac{\pi^2}{32}\right)+\frac{\pi}{2\sqrt{2}}\left(\frac{\pi}{4}-\frac{1}{2}\ln 2\right)^2+\frac{\pi}{2\sqrt{2}}\left(\frac{\pi}{8}\ln 2-\frac{\pi^2}{24}\right)-\\ &\frac{\pi}{4\sqrt{2}}\left(\text{G}-\frac{\pi}{4}\ln 2-\frac{\pi^2}{16}\right)\\ &=\frac{\pi^3}{96\sqrt{2}}+\frac{\pi\ln^2 2}{8\sqrt{2}} \end{align}



Thus,

\begin{align}\text{I+J}&=\frac{\pi^3}{4\sqrt{2}}-4\text{L}\\ &=\frac{\pi^3}{4\sqrt{2}}-4\left(\frac{\pi^3}{96\sqrt{2}}+\frac{\pi\ln^2 2}{8\sqrt{2}}\right)\\ &=\boxed{\frac{5\pi^3}{24\sqrt{2}}-\frac{\pi\ln^2 2}{2\sqrt{2}}} \end{align}


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...